Al-Er-Ti (Aluminum-Erbium-Titanium)

V. Raghavan

Recently, [2000Lia] determined an isothermal section for this system at $500~^{\circ}\text{C}$.

Binary Systems

The Al-Er phase diagram [2002Cac] depicts five intermetallic compounds: ErAl₃ (AuCu₃-type cubic), ErAl₂ (MgCu₂-type cubic), ErAl (orthorhombic), Er₃Al₂ (Zr₃Al₂-type tetragonal), and Er₂Al (Co₂Si-type orthorhombic). An additional phase Er₂Al₁₇ (Th₂Zn₁₇-type rhombohedral) was reported by [1993And] and confirmed by [2000Lia]. An updated Al-Ti phase diagram appears in this issue. The Er-Ti phase diagram [Massalski2] contains no intermediate phases. The mutual solid solubility between Er and Ti is limited.

Ternary Compounds

Two Al-rich ternary compounds were reported in this system by [1995Nie1,2]. $\text{Er}_6\text{Ti}_4\text{Al}_{43}$ (denoted τ_1 here) is $\text{Ho}_6\text{Mo}_4\text{Al}_{43}$ -type hexagonal, space group $P6_3/mcm$, a=1.1024 nm, and c=1.7800 nm [1995Nie1]. The second compound $\text{ErTi}_2\text{Al}_{20}$ (τ_2) is $\text{CeCr}_2\text{Al}_{20}$ -type cubic, space group Fd3 or Fd3m, a=1.4662 nm [1995Nie2].

Isothermal Section

With starting metals of 99.9% purity, [2000Lia] melted 130 alloy compositions in an arc furnace under Ar atm.

After a final anneal at 500 °C for 4 days, the samples were quenched in an ice-water mixture. The phase equilibria were studied mainly by x-ray powder diffraction. The isothermal section at 500 °C constructed by [2000Lia] is redrawn in Fig. 1 to agree with the accepted binary data. The two ternary compounds $\rm Er_6Ti_4Al_{43}$ (τ_1) and $\rm ErTi_2Al_{20}$ (τ_2) are stable at 500 °C. $\rm Er_2Al$, $\rm Er_3Al_2$ and $\rm ErAl_2$ dissolve 2, 3, and 16 at.% Ti, respectively. The solubility of Er in the Ti-Al phases is 0.6 at.% or less.

References

1993And: M. Andrecut, I. Pop, and I. Burda, Structural and Magnetic Characteristics of the Intermetallic Compounds Ho₂Al₁₇ and Er₂Al₁₇, *J. Phys. D: Appl. Phys.*, Vol 26, 1993, p 1810-1813

1995Nie1: S. Niemann and W. Jeitschko, Ternary Aluminides A₆T₄Al₄₃ (A = Y, Nd, Sm, Gd-Lu, and U; T = Ti, V, Nb, and Ta) with Ho₆Mo₄Al₄₃ Type Structure, *J. Solid State Chem.*, Vol 116, 1995, p 131-135

1995Nie2: S. Niemann and W. Jeitschko, Ternary Aluminides AT_2Al_{20} (A = Rare-Earth Elements and Uranium; T = Ti, Nb, Ta, Mo and W) With $CeCr_2Al_{20}$ type Structure, *J. Solid State Chem.*, Vol 114, 1995, p 337-341

2000Lia: J. Liang, J. Huang, H. Zhou, Y. Zhang, and J. Yan, Phase Equilibia of the Al-Ti-Er Ternary System at 500 °C, Z. Metallkde., Vol 91 (No. 8), 2000, p 669-671.

2002Cac: G. Cacciamani, A. Saccone, S. De Negri, and R. Ferro, The Al-Er-Mg Ternary System. Part II: Thermodynamic Modeling, *J. Phase Equilibria*, Vol 23 (No 1), 2002, p 38-50

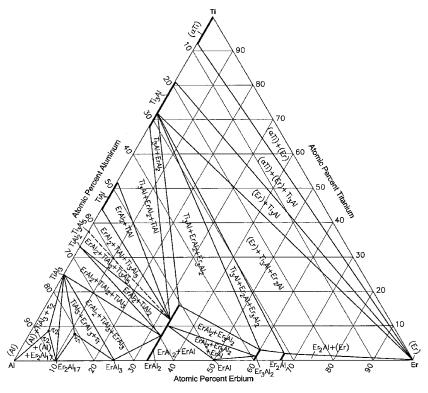


Fig. 1 Al-Er-Ti isothermal section at 500 °C [2000Lia]; narrow two-phase regions around tie-triangles are omitted.